Sry-negative XX sex reversal in purebred dogs.

نویسندگان

  • V N Meyers-Wallen
  • D Schlafer
  • I Barr
  • R Lovell-Badge
  • A Keyzner
چکیده

The gene responsible for testis induction in normal male mammals is the Y-linked Sry. However, there is increasing evidence that other genes may have testis-determining properties. In XX sex reversal (XXSR), testis tissue develops in the absence of the Y chromosome. Previous polymerase chain reaction (PCR) assays indicated that autosomal recessive XXSR in the American cocker spaniel is Sry-negative. In this study, genomic DNA from the breeding colony of American cocker spaniels and from privately owned purebred dogs were tested by PCR using canine primers for the Sry HMG box and by Southern blots probed with the complete canine Sry coding sequence. Sry was not detected by either method in genomic DNA of affected American cocker spaniels or in the majority (20/21) of affected privately owned purebred dogs. These results confirm that the autosomal recessive form of XXSR in the American cocker spaniel is Sry-negative. In combination with previous studies, this indicates that Sry-negative XXSR occurs in at least 15 dog breeds. The canine disorder may be genetically heterogeneous, potentially with a different mutation in each breed, and may provide several models for human Sry-negative XXSR. A comparative approach to sex determination should be informative in defining the genetic and cellular mechanisms that are common to all mammals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-43: Identification of SOX3 as an XX MaleSex Reversal Gene in Mice and Jumans

Background: Mammals utilise an XX/XY system of sex determination in which the Y-linked gene SRY (Sexdetermining region Y) exerts a dominant masculinising influence on sexual development. Sex chromosome homology and comparative sequence studies suggest that SRY evolved from the related SOX3 gene on the X chromosome, although there is no direct functional evidence to support this hypothesis. The ...

متن کامل

Linkage to CFA29 detected in a genome-wide linkage screen of a canine pedigree segregating Sry-negative XX sex reversal.

Canine Sry-negative XX sex reversal is a disorder of gonadal development wherein individuals having a female karyotype develop testes or ovotestes. In this study, linkage mapping was undertaken in a pedigree derived from one proven carrier American cocker spaniel founder male and beagle females. All affected dogs in the analysis were XX true hermaphrodites and confirmed to be Sry negative by po...

متن کامل

Exclusion of candidate genes for canine SRY-negative XX sex reversal.

In mammals, the Y-linked SRY gene is normally responsible for testis induction, yet testis development can occur in the absence of Y-linked genes, including SRY. The canine model of SRY-negative XX sex reversal could lead to the discovery of novel genes in the mammalian sex determination pathway. The autosomal genes causing testis induction in this disorder in dogs, humans, pigs, and horses are...

متن کامل

Autosomal XX sex reversal caused by duplication of SOX9.

SOX9 is one of the genes that play critical roles in male sexual differentiation. Mutations of SOX9 leading to haploinsufficiency can cause campomelic dysplasia and XY sex reversal. We report here evidence supporting that SOX9 duplication can cause XX sex reversal. A newborn infant was referred for genetic evaluation because of abnormal male external genitalia. The infant had severe penile/scro...

متن کامل

A Korean boy with 46,XX testicular disorder of sex development caused by SOX9 duplication

The 46,XX testicular disorder of sex development (DSD), also known as 46,XX male syndrome, is a rare form of DSD and clinical phenotype shows complete sex reversal from female to male. The sex-determining region Y (SRY) gene can be identified in most 46,XX testicular DSD patients; however, approximately 20% of patients with 46,XX testicular DSD are SRY-negative. The SRY-box 9 (SOX9) gene has se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular reproduction and development

دوره 53 3  شماره 

صفحات  -

تاریخ انتشار 1999